ALL
RIGHTS
RESER
VED.
wanminliu@gmail.com
Wh
y
?
Theor
em
Le
t
fix
e
and
gix
s
be
tw
o
funct
ions
de
fine
d
in
a
neiborhood
of
x0
·
suppo
se
th
a
t
III
Ifi
x
=
A
,
(2)
9I
X
)=
B
,
and
BI
O
.
Then
=
Pr
oof
St
ep
1
,
We
wa
n
t
to
us
the
de
finit
ion
of
li
mi
t
to
sho
w
(3)
,
i
.
e
we
wa
n
t
to
sho
w
that
HSC0
,
=
&
(d
epend
ing
on
3)
so
that
fo
r
all
x
wit
h
</X
-
X
o
lc
d
,
we
ha
v
e
(4)
I
-
<
we
wa
n
t
to
find
su
ch
&
by
us
ing
the
de
finit
ion
of
li
mi
t
fo
r
(1)
and
(2)
.
ALL
RIGHTS
RESER
VED.
wanminliu@gmail.com
111
>
15
)
F
9
,
30
,
&
=
d
,
(9
,
)
S
.
t
.
Ifix
)
-
Al
<G
,
fo
r
al
l
x
with
ocIX
-
X
ol
&,
(2)
<)
(6)
F
&
=
>0
,
&
=
(9n)
S
-
t
.
19
1x
-
B1
< d
2
fo
r
al
l
x
with
ocIX
-
X
ol
&
To
sho
w
141
,
we
us
e
triang
le
inequality
.
1
-
i
=
1
-
+
1 -
->
I
-
)+
-
=
,
/f
ix
-
Al
+
is
,
19
1x
-
B1
.
)
St
ep
2
.
Since
19
1x3
1
appears
in
the
de
nom
inat
or
of
fo
r
m
u
l
a
in
R)
,
we
wa
n
t
to
giv
e
a
bound
of
/g
ixs)
by
the
de
finit
ion
(6)
as
fo
l
l
o
w
s
.
We
fur
t
he
r
get
a
bound
of
ex
T
by
using
th
e
fa
c
t
"
to
"
ALL
RIGHTS
RESER
VED.
wanminliu@gmail.com
(Bo
und
of
19
151)
:
by
us
ing
16)
We
ta
k
e
92
=
I
,
then
=
&2)
=
:
Es
so
that
4
we
den
ot
e
it
by
3
18
7
19(x)
-
B1
<
B
fo
r
all
x
with
ocIX
-
X
oK
&
>
No
t
e
tha
t
we
hav
e
the
triangle
inequality
(19xx1
- 1
B
1
)
=
/9
1x)
-
B1
.
(9)
Us
i
n
g
18
)
and
(9)
to
g
e
t
h
e
r
,
fo
r
X
with
oc
1
X
-
x
old3
,
we
hav
e
119(x1-
1B1)
<
1B1
i
.
e
.
-
I
<
19xxl
-
1B1
<
i
.
2
-
B
<19(x))
<
(B)
.
(1
0)
<Bo
u
n
d
of
15xx))
:
Sin
ce
B
FO
by
th
e
giv
en
condition
,
so
(1
0)
implies
that
fo
r
X
wi
t
h
0
<IX
-
X
o
l<
&
3
,
=>
g
By
(1
1
)
3)
Bl
ALL
RIGHTS
RESER
VED.
wanminliu@gmail.com
St
ep
3
.
We
apply
(11)
to
(7)
and
find
that
x
Ifix
s
-
Al
+
B
:
19
1-
B1
<H
-
Al
+
19x
-
B1
-
,
Ifx
-
Al
+
2A
1
+
20
23
/g
(x)-
B)
.
(12)
IB
1
2
We
ar
e
no
w
re
a
d
y
to
sho
w
the
de
finit
ion
(4)
.
F
3 <
0
,
by
using
(5)
and
ta
k
i
n
g
Ei
=
=
-1
we
find
&
,
19)
=
:
5
,
we
call
it
(i)
so
that
(13)
(f
(x)
-
A)
<
9
,
= 2
fo
r
all
x
with
<1X
-
x
o
l<
d
i
.
ALL
RIGHTS
RESER
VED.
wanminliu@gmail.com
By
us
ing
(6)
again
and
ta
k
i
n
g
Ez
=
E
11312
21
Al
+
20
23
we
find
diCE
2)
=
:
2
(W
e
call
it
&2)
so
that
114)
19(x)
-
BK
<
9)
=
11312
21A
1
+
20
23
fo
r
all
x
with
0
</X
-
x
o
l<
&2
.
Now
we
ta
k
e
8
=
mind
&
,
J
,
&33
.
Then
fo
r
all
X
wit
h
o
<I
X
-
x
o
)
<
&
,
we
ha
v
e
15
-
***
/
-
A
+
2A
1
+
20
23
/g
(x)
-
B)
IB
1
2
(1
3)
,
(14)
2
11312
< 5
1
.
=
+
2
A
1
+
20
239
/
1B12
I'
21A
)
+
20
23
=
E
.
so
we
check
ed
(4)
the
de
finit
ion
of
limit
of
quot
ient
s
.
The
pr
o
o
f
of
(3)
is
finis
he
d
.
17
ALL
RIGHTS
RESER
VED.
wanminliu@gmail.com
Remark
.
①
The
essential
par
t
of
the
pr
o
o
f
is
th
e
inequality
()
,
wher
e
we
could
sho
w
that
:
its
,
/f
ix
-
Al
+
it is
,
19x
-B
1
bounde
d
Is
m
al
l
bounde
d
sm
a
ll
Once
we
ha
v
e
abo
v
e
id
ea
,
we
could
wri
t
e
th
e
pr
o
o
f
.
②
The
abo
v
e
is
a
re
g
i
o
n
s
pr
o
o
f
,
wh
er
e
we
use
(6)
TWICE
:
*
on
e
tim
e
is
fo
r
th
e
contr
ol
of
the
bound
of
Igi
x
s
)
.
*
the
ot
her
ti
me
is
fo
r
contr
ol
of
the
smallnes
s
of
19
1x
-
B1
.
③
The
TRICK
in
(12)
"21A)+20
23
"
is
be
caus
e
it
is
NO
T
ZER
O
So
we
can
pu
t
it
int
o
denom
inat
or
of
En
.
The
numb
er
20
25
is
just
a
po
sitiv
e
num
b
er
fo
r
that
yo
u
could
re
m
e
m
b
e
r
th
e
trick
.