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Abstract

The author deals with two noncooperative elliptic systems involving p(x)-
Laplacian in a smooth bounded domain and in RN respectively. With some
symmetry assumptions and growth conditions on nonlinearities, the existences
of infinitely many solutions are obtained by using a limit index theory devel-
oped by Li (Nonlinear Anal.: TMA, 25(1995) 1371) in variable exponent
Sobolev spaces.
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1 Introduction

The theory of variable exponent Lebesgue and Sobolev spaces has been developed
by several researchers in recent years. These spaces are natural generalization of the
classical Lebesgue space Lp(Ω) and the Sobolev space W k,p(Ω). Although the study
of these spaces can go back to [21] and [20] as special cases of Musielak-Orlicz spaces,
the first paper systematically investing these spaces appeared in 1991 by Kováčik
and Rákosńık [17]. These spaces have been independently rediscovered by several
researchers based on different background. We refer to Samko [24], Fan and Zhao
[12], Acerbi and Mingione [1]. We also refer to three survey papers of these areas
by Harjulehto and Hästö [15], by Diening, Hästö and Nekvinda [4] and by Samko
[25]. Many applications have been found such as variational integrals with non-
standard growth conditions in nonlinear elasticity theory by Zhikov [31], models in
electrorheological fluids by Růžička [23], and models in image restoration by Chen,
Levine and Rao [3].
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In this paper, we consider the following two noncooperative elliptic systems in-
volving p(x)-Laplacian in a smooth bounded domain Ω and in RN respectively:

4p(x)u = Fs(x, u, v) in Ω,

−4p(x)v = Ft(x, u, v) in Ω,

u|∂Ω = 0, v|∂Ω = 0;

(1.1)

{
4p(x)u− |u|p(x)−2u = Gs(|x|, u, v) in RN ,

−4p(x)v + |v|p(x)−2v = Gt(|x|, u, v) in RN ;
(1.2)

where 4p(x)u := div(|∇u|p(x)−2∇u) is called the p(x)-Laplacian, F (x, s, t) ∈ C1(Ω̄×
R2,R), G(r, s, t) ∈ C1([0,∞)× R2,R), Fs = ∂F

∂s
and similar to Ft, Gs, Gt.

Many results about p(x)-Laplacian equations with Dirichlet boundary conditions
([11, 5, 6]), Neumann boundary conditions ([19]) and in RN cases ([8, 28]) have
been obtained by variational approach and sub-supersolution method. Acerbi and
Mingione [1] have obtained the local C1,α regularity of minimizers of the integral
functional with p(x)-growth conditions under the assumption that p(x) is Hölder
continuous. The global regularity results have also been obtained by Fan [7]. There
are some results about elliptic systems. Hamidi [14] considered the following system

−4p(x)u = Fs(x, u, v) in Ω,

−4q(x)v = Ft(x, u, v) in Ω,

u|∂Ω = 0, v|∂Ω = 0;

(1.3)

and obtained the existence of solution since the integral functional of (1.3) is coercive
and satisfies mountain pass geometry under some assumptions on F . The author also
gave the multiplicity results by using the Fountain theorem when some symmetry
condition on F is assumed. Zhang [29] considered the system

−4p(x)u = f(v) in Ω,

−4p(x)v = g(u) in Ω,

u|∂Ω = 0, v|∂Ω = 0;

(1.4)

on a bounded radial symmetric domain with p(x) radial symmetric, and proved
the existence of a positive solution under some assumptions by sub-supersolution
method. He also considered the existence of solutions for weighted p(r)-Laplacian
system boundary value problems via Leray-Schauder degree in [30].

The main difficulties we meet here are that the corresponding integral functionals
of (1.1) and (1.2) are strongly indefinite. In addition to the nonlinearity of p(x)-
Laplacian operator, we also lose a compact embedding theorem in RN case. Thanks
to a limit index theory developed by Li [18] and the principle of symmetric criticality
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due to Palais [22] in RN case, we can obtain the existence of infinitely many solutions

of problems (1.1) and (1.2) in the spaces W
1,p(x)
0 (Ω) and W 1,p(x)(RN) respectively

under some nature assumptions on the nonlinearities.
Let us denote by c or ci some generic positive constants which may be different

throughout the paper.
Below are the assumptions.

(P1) p(x) ∈ C(Ω̄) and 1 < infΩ p(x) := p− ≤ p+ := supΩ p(x) <∞.
(P2) p(x) = p(|x|) := p(r) ∈ C0,1(RN) with 1 < infRN p(x) := p− ≤ p+ :=
supRN p(x) < N .
(F1) F ∈ C1(Ω̄× R2,R).
(F2) |Fs(x, s, t)| + |Ft(x, s, t)| ≤ c1 + c2(|s|r(x)−1 + |t|r(x)−1) where r(x) ∈ C(Ω̄),
2 ≤ r(x) < p∗(x).

p∗(x) :=

{
Np(x)

(N−p(x))
, if p(x) < N,

∞, if p(x) ≥ N.

(F3) ∃M > 0 and µ > p+ such that

0 < µF (x, s, t) ≤ sFs(x, s, t) + tFt(x, s, t),

for all (x, s, t) ∈ Ω̄×R2 with s2+t2 ≥M2. In this case, F (x, s, t) ≥ c1(|s|µ+|t|µ)−c2.
(F4) sFs(x, s, t) ≥ 0, for all (x, s, t) ∈ Ω̄× R2.
(F5) F (x,−s,−t) = F (x, s, t), for all (x, s, t) ∈ Ω̄× R2.
(G1) G ∈ C1([0, ∞)× R2,R).
(G2) For some p(x)� q(x)� p∗(x),

|Gs(|x|, s, t)|+ |Gt(|x|, s, t)| ≤ c1(|s|p(x)−1 + |t|p(x)−1) + c2(|s|q(x)−1 + |t|q(x)−1).

The symbol α(x)� β(x) means infΩ̄(β(x)− α(x)) > 0.
(G3) ∃M > 0 and µ > p+ such that

0 < µG(r, s, t) ≤ sGs(r, s, t) + tGt(r, s, t),

for all (r, s, t) ∈ [0, ∞)× R2 with s2 + t2 ≥M2.
(G4) |Gs(|x|, s, t)| + |Gt(|x|, s, t)| = o(|s|p(x)−1) + o(|t|p(x)−1) uniformly on RN as
s2 + t2 → 0.
(G5) sGs(r, s, t) ≥ 0, for all (r, s, t) ∈ [0, ∞)× R2.
(G6) G(r,−s,−t) = G(r, s, t), for all (r, s, t) ∈ [0, ∞)× R2.

The following are the main results.

Theorem 1.1 Suppose that (P1) and (F1)-(F5) are satisfied. Let Φ(u, v) be the in-
tegral functional of (1.1). Then problem (1.1) possesses a sequence of weak solutions

{±(un, vn)} in W
1,p(x)
0 (Ω)×W 1,p(x)

0 (Ω) such that Φ(un, vn)→ +∞ as n→∞.
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Theorem 1.2 Suppose that (P2) and (G1)-(G6) are satisfied. Let Ψ(u, v) be the
integral functional of (1.2). Then problem (1.2) possesses a sequence of radial weak
solutions {±(un, vn)} in W 1,p(x)(RN) ×W 1,p(x)(RN) such that Ψ(un, vn) → +∞ as
n → ∞. In addition, if N = 4 or N ≥ 6, the problem (1.2) possesses infinitely
many nonradial weak solutions.

Remark 1.3 The definitions of weak solution of (1.1) and (1.2) are given in Defi-
nition 3.1 and Definition 4.1 respectively.

Remark 1.4 When p(x) ≡ p (a constant), the corresponding results have been ob-
tained by Li in [18] and by Huang and Li in [16]. The aim of the present paper is
to generalize their results to general cases.

The paper is organized as follows. In Section 2.1 we do some preliminaries of the
space W

1,p(x)
0 (Ω) and W 1,p(x)(RN), review some basic properties of p(x)-Laplacian

operator. In Section 2.2 we recall a limit index theory due to Li. In Section 3, we
prove Theorem 1.1. In Section 4, we prove Theorem 1.2.

2 Preliminaries

2.1 Variable exponent Sobolev spaces and p(x)-Laplacian
operator

Let Ω be an open subset of RN . In this subsection, without further assumption, Ω
could be RN . On the basic properties of the space W 1,p(x)(Ω) we refer to [17, 12].
In the following we display some facts which we will use later.

Denote by S(Ω) the set of all measurable real functions defined on Ω, and el-
ements in S(Ω) that equal to each other almost everywhere are considered as one
element. Denote L∞+ (Ω) = {p ∈ L∞(Ω) : ess infΩ p(x) := p− ≥ 1}.

For p ∈ L∞+ (Ω), define

Lp(x)(Ω) = {u ∈ S(Ω) :

∫
Ω

|u|p(x)dx <∞},

with the norm

|u|Lp(x)(Ω = |u|p(x) = inf{λ > 0 :

∫
Ω

|u/λ|p(x)dx ≤ 1};

and define
W 1,p(x)(Ω) = {u ∈ Lp(x)(Ω) : |∇u| ∈ Lp(x)(Ω)},

with the norm
‖u‖W 1,p(x)(Ω) = |u|Lp(x)(Ω) + |∇u|Lp(x)(Ω).
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We denote by W
1,p(x)
0 (Ω) the closure of C∞0 (Ω) in W 1,p(x)(Ω). Define

W 1,p(x)
r (RN) = {u ∈ W 1,p(x)(RN) : u is radially symmetric}.

Hereafter, we always assume that p(x) is continuous and p− > 1.

Proposition 2.1 ([17, 12]) The spaces Lp(x)(Ω), W 1,p(x)(Ω), W
1,p(x)
0 (Ω) and

W
1,p(x)
r (RN) all are separable and reflexive Banach spaces.

Proposition 2.2 ([17, 12, 9]) The conjugate space of Lp(x)(Ω) is Lp
o(x)(Ω), where

1
p(x)

+ 1
po(x)

= 1. For any u ∈ Lp(x)(Ω) and v ∈ Lpo(x)(Ω), the Hölder inequality holds:∫
Ω

|uv|dx ≤ 2|u|p(x)|v|po(x). (2.1)

Remark 2.3 In the right of (2.1), the constant 2 is suitable, but not the best. The
best constant is given in [9] denoted by d(p−,p+) which only depends on p− and p+

when p(x) is given and d(p−,p+) is smaller than 1
p−

+ 1
p+

.

Proposition 2.4 ([12] Theorem 2.7) Suppose that Ω is a bounded domain. In

W
1,p(x)
0 (Ω) the Poincaré inequality holds, that is, there exists a positive constant

c such that
|u|p(x) ≤ c|∇u|p(x), for all u ∈ W 1,p(x)

0 (Ω).

So |∇u|p(x) is an equivalent norm in W
1,p(x)
0 (Ω).

Remark 2.5 When Ω is a bounded domain, we denote by ‖u‖ := |∇u|p(x) as the

equivalent norm in W
1,p(x)
0 (Ω) in Section 3. In Section 4 we will use the following

equivalent norm on W 1,p(x)(RN) also with the symbol ‖u‖:

‖u‖ := inf{λ > 0 :

∫
Ω

(|∇u|p(x) + |u|p(x))/λp(x)dx ≤ 1}. (2.2)

Proposition 2.6 ([12] Theorem 1.3) Set ρ(u) =
∫

Ω
|u(x)|p(x)dx. For u, uk in the

space Lp(x)(Ω), we have
(1) |u|p(x) < 1 (= 1;> 1) ⇐⇒ ρ(u) < 1 (= 1;> 1);

(2) |u|p(x) > 1⇒ |u|p
−

p(x) ≤ ρ(u) ≤ |u|p
+

p(x); |u|p(x) < 1⇒ |u|p
+

p(x) ≤ ρ(u) ≤ |u|p
−

p(x);

(3) limk→∞ |uk|p(x) = 0 (=∞) ⇐⇒ limk→∞ ρ(uk) = 0 (=∞).

Proposition 2.7 Let X be the space W
1,p(x)
0 (Ω) or the space W 1,p(x)(RN) with the

norm ‖ · ‖ as Remark 2.5. Set I(u) =
∫

Ω
|∇u(x)|p(x)dx when Ω is bounded or

I(u) =
∫
RN (|∇u(x)|p(x) + |u(x)|p(x))dx in the RN case respectively. If u, uk ∈ X then

the similar conclusions of Proposition 2.6 hold for ‖ · ‖ and I(·).
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Proposition 2.8 ([17, 12]) Let F : Ω × R → R satisfies Carathéodory conditions,
and

|F (x, t)| ≤ a(x) + b|t|
p1(x)
p2(x) , for all (x, t) ∈ Ω× R,

where a ∈ Lp2(x)(Ω), b is a positive constant, p1, p2 ∈ L∞+ (Ω). Denote by NF the
Nemytsky operator defined by F , i.e.

(NF (u))(x) = F (x, u(x)),

then NF : Lp1(x)(Ω) → Lp2(x)(Ω) is a continuous and bounded map.

Proposition 2.9 ([10] Theorem 1.1.) If p: Ω → R is Lipschitz continuous and
p+ < N, then for q ∈ L∞+ (Ω) with p(x) ≤ q(x) ≤ p∗(x), there is a continuous
embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Proposition 2.10 ([5] Proposition 2.4.) Assume that the boundary of Ω possesses
the cone property and p ∈ C(Ω̄). If q ∈ C(Ω̄) and 1 ≤ q(x) < p∗(x) for x ∈ Ω̄, then
there is a compact embedding W 1,p(x)(Ω) ↪→ Lq(x)(Ω).

Proposition 2.11 ([13] Theorem 3.1.) Suppose that p : RN → R is a uniformly
continuous and radially symmetric function satisfying 1 < p− ≤ p+ < N . Then, for
any measurable function q : RN → R with

p(x)� q(x)� p∗(x), for all x ∈ RN ,

there is a compact embedding

W 1,p(x)
r (RN) ↪→ Lq(x)(RN).

Definition 2.12 On the space Lp(x)(Ω)∩Lq(x)(Ω), we define the norm |u|p(x)∧q(x) =
|u|p(x) + |u|q(x). On the space (Lp(x)(Ω))2 := Lp(x)(Ω) × Lp(x)(Ω), we define the
norm |(u, v)|p(x) = inf{λ > 0 :

∫
Ω

(|u|p(x) + |v|p(x))/λp(x)dx ≤ 1}. On the space

(Lp(x)(Ω))2∩(Lq(x)(Ω))2, we define the norm |(u, v)|p(x)∧q(x) = |(u, v)|p(x)+|(u, v)|q(x).
On the space Lp(x)(Ω)+Lq(x)(Ω), we define the norm |u|p(x)∨q(x) = inf{|v|p(x)+|w|q(x) :
v ∈ Lp(x)(Ω), w ∈ Lp(x)(Ω), u = v + w}.

Similar to Proposition 2.8, we have the following proposition.

Proposition 2.13 (1) Assume 1 ≤ p(x), r(x) <∞, f ∈ C(Ω× R2) and

f(x, s, t) ≤ c1(|s|
p(x)
r(x) + |t|

p(x)
r(x) ).

Then for every (u, v) ∈ (Lp(x)(Ω))2, f(·, u, v) ∈ Lr(x)(Ω) and the operator

T1 : (Lp(x)(Ω))2 → Lr(x)(Ω) : (u, v) 7→ f(x, u, v)
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is continuous.
(2) Assume 1 ≤ p(x), r(x), q(x), s(x) <∞, f ∈ C(Ω× R2) and

f(x, s, t) ≤ c2(|s|
p(x)
r(x) + |t|

p(x)
r(x) ) + c3(|s|

q(x)
s(x) + |t|

q(x)
s(x) ).

Then for every (u, v) ∈ (Lp(x)(Ω))2∩ (Lq(x)(Ω))2, f(·, u, v) ∈ Lr(x)(Ω) +Ls(x)(Ω) and
the operator

T2 : (Lp(x)(Ω))2 ∩ (Lq(x)(Ω))2 → Lr(x)(Ω) + Ls(x)(Ω) : (u, v) 7→ f(x, u, v)

is continuous.

Now we display some basic properties of p(x)-Laplacian operators. Let X be

W
1,p(x)
0 (Ω) or W 1,p(x)(RN). Consider the following two functionals:

J1(u) =

∫
Ω

1

p(x)
|∇u|p(x)dx, for all u ∈ X = W

1,p(x)
0 (Ω);

J2(u) =

∫
RN

1

p(x)
(|∇u|p(x) + |u|p(x))dx, for all u ∈ X = W 1,p(x)(RN).

We know that J1, J2 ∈ C1(X,R), and the p(x)-Laplacian operator is the derivative
operator of J1 in the weak sense. We denote L = J ′1: X → X∗ and T = J ′2:
X → X∗, then

〈Lu, ũ〉 =

∫
Ω

|∇u|p(x)−2∇u∇ũdx, for all u, ũ ∈ X, (2.3)

〈Tu, ũ〉 =

∫
RN

(|∇u|p(x)−2∇u∇ũ+ |u|p(x)−2uũ)dx, for all u, ũ ∈ X. (2.4)

Proposition 2.14 ([11, 8])
(1) L, T : X → X∗ are two continuous, bounded and strictly monotone operators.
(2) L, T : X → X∗ are two mappings of type (S+). Here a map L is called of type
(S+) if we have the property that un ⇀ u in X and lim supn→∞〈L(un)− L(u), un −
u〉 ≤ 0, then un → u in X.
(3) L, T : X → X∗ are two homeomorphisms.

2.2 A limit index theory due to Li

In this section, we will recall a limit index theory developed by Li [18]. Suppose Z
is a G -Banach space, where G is a topological group. For the definition of index i
we refer to [26] Definition 5.9.
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Definition 2.15 An index i is said to satisfy the d-dimension property if there is a
positive integer d such that

i(V dk ∩ S1) = k

for all dk-dimensional subspaces V dk ∈ Σ := {A ⊂ Z : A is closed and gA =
A for all g ∈ G } such that V dk ∩ Fix G = {0}, where S1 is the unit sphere in Z.

Proposition 2.16 ([18] Lemma 2.3) Suppose Z = W1 ⊕ W2 and dimW1 = kd,
where Wj is a G -invariant subspace, j = 1, 2. Let i be an index satisfying the
d-dimension property. If W1 ∩Fix G = {0}, A ∈ Σ and i(A) > k, then A∩W2 6= ∅.

Suppose U and V are G -invariant closed subspaces of Z such that Z = U ⊕ V ,
where V is infinite dimension and V = ∪∞j=1Vj. Here Vj is a dnj-dimensional G -
invariant subspace of V , and V1 ⊂ V2 ⊂ . . . for j = 1, 2, . . . . Let Zj = U ⊕ Vj, and
let Aj = A ∩ Zj for all A ∈ Σ.

Definition 2.17 ([18] Definition 2.4) Let i be an index satisfying the d-dimension
property. A limit index i∞ with respect to {Zj} induced by i is a mapping

i∞ : Σ→ Z ∪ {−∞, +∞}

given by
i∞(A) = lim sup

j→∞
(i(Aj)− nj).

Proposition 2.18 ([18] Proposition 2.5) Let A, B ∈ Σ. Then i∞ satisfies:
(1) A = ∅ ⇐⇒ i∞(A) = −∞;
(2) (Monotonicity) A ⊂ B ⇒ i∞(A) ≤ i∞(B);
(3) (Subadditivity) i∞(A ∪B) ≤ i∞(A) + i(B);
(4) If V ∩ Fix G = {0}, then i∞(Sρ ∩ V ) = 0, where Sρ = {z ∈ Z, ‖z‖ = ρ};
(5) If Y0 and Ỹ0 are G -invariant closed subspaces of V such that V = Y0 ⊕ Ỹ0,
Ỹ0 ⊂ Vj0 for some j0 and dim Ỹ0 = dm, then i∞(Sρ ∩ Y0) ≥ −m.

Definition 2.19 Let Z be a Banach space which has a decomposition Z = ∪∞j=1Zj
where Z1 ⊂ Z2 · · · , dimZj = dnj. A functional f ∈ C1(Z,R) is said to satisfy
the (PS)∗c condition with respect to {Zn} at the level c ∈ R if any sequence {znk},
znk ∈ Znk such that

f(znk)→ c and ‖(fnk)′(znk)‖ → 0 as nk →∞

possesses a subsequence which converges in Z to a critical point of f , where fnk :=
f |Znk .
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Theorem 2.20 ([18] Corollary 4.4, [16] Theorem 2.7) Assume that
(B1) f ∈ C1(Z,R) is G -invariant;
(B2) there are G -invariant closed subspaces U and V such that V is infinite dimen-
sion and

Z = U ⊕ V ;
(B3) there is a sequence of G -invariant finite-dimensional subspaces

V1 ⊂ V2 · · · ⊂ Vj ⊂ · · · , dimVj = dnj,

such that V = ∪∞j=1Vj;
(B4) there is an index i on Z satisfying the d-dimension property;
(B5) there are G -invariant subspaces Y0, Ỹ0, Y1 of V such that V = Y0 ⊕ Ỹ0, Y1,
Ỹ0 ⊂ Vj0 for some

j0 and dim Ỹ0 = dm ≤ dk = dimY1;
(B6) there are α and β, α < β such that f satisfies (PS)∗c with respect to Zn :=
U ⊕ Vn,

for all c ∈ [α, β];
(B7) 

(a) either Fix G ⊂ U ⊕ Y1 or Fix G ∩ V = {0},
(b) there is ρ > 0 such that f(z) ≥ α, for all z ∈ Y0 ∩ Sρ,
(c) f(z) ≤ β, for all z ∈ U ⊕ Y1.

If i∞ is the limit index induced by i, then the numbers

dj = sup
i∞(A)≥j

inf
z∈A

f(z)

are critical values of f and α ≤ d−m ≤ d−m−1 ≤ · · · ≤ d−k+1 ≤ β. Moreover, if d =
dl = · · · = dl+r, r > 0, then i(Kc) ≥ r+ 1, where Kc = {z ∈ Z; f ′(z) = 0, f(z) = d}.

Proof. By Proposition 2.18(5), i∞(Sρ∩Y0) ≥ −m thus α ≤ d−m. It is obvious that
d−m ≤ d−m−1 ≤ · · · ≤ d−k+1. Let us turn to prove d−k+1 ≤ β. Let Vj	Y1 be a fixed
G -invariant complementary subspace of Y1 in Vj, j ≥ j0. It is easy to obtain that
(Vj	Y1)∩Fix G = {0} since of (B7)(a). Suppose A ∈ Σ and i∞(A) ≥ −k+ 1, there
must be some j such that i(Aj)−nj > −k, that is i(Aj) > nj−k. On the other hand,
we have dim(Vj 	 Y1) = d(nj − k). By Proposition 2.16 we get Aj ∩ (U ⊕ Y1) 6= ∅.
Then A ∩ (U ⊕ Y1) 6= ∅. By the definition of d−k+1 and (B7)(c), we get d−k+1 ≤ β.
The proof that dj are critical values of f is the Theorem 4.1 in [18]. �

Remark 2.21 In [18] Corollary 4.4 and [16] Theorem 2.7, this theorem is stated
incorrectly , but the proof they gave there is essentially correct.
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3 The bounded case

In this section, we always assume that (P1) is satisfied. Denote by X the space

W
1,p(x)
0 (Ω) with the norm ‖u‖ = |∇u|p(x) as in Remark 2.5. The integral functional

of (1.1) is

Φ(u, v) = −
∫

Ω

1

p(x)
|∇u|p(x)dx+

∫
Ω

1

p(x)
|∇v|p(x)dx−F(u, v),

where

F(u, v) :=

∫
Ω

F (x, u, v)dx, u, v ∈ X.

Definition 3.1 The pair (u, v) ∈ X ×X is called a weak solution of (1.1) if

−
∫

Ω

|∇u|p(x)−2∇u∇ũdx+

∫
Ω

|∇v|p(x)−2∇v∇ṽdx

=

∫
Ω

Fs(x, u, v)ũdx+

∫
Ω

Ft(x, u, v)ṽdx, for all (ũ, ṽ) ∈ X ×X. (3.1)

For simplicity, using the operator L defined in (2.3), we rewrite (3.1) as

〈(−Lu, Lv), (ũ, ṽ)〉 = 〈F ′(u, v), (ũ, ṽ)〉, for all (ũ, ṽ) ∈ X ×X,

where
〈(−Lu, Lv), (ũ, ṽ)〉 := 〈−Lu, ũ〉+ 〈Lv, ṽ〉,

and

〈F ′(u, v), (ũ, ṽ)〉 :=

∫
Ω

Fs(x, u, v)ũdx+

∫
Ω

Ft(x, u, v)ṽdx.

Lemma 3.2 Suppose F satisfies (F1) and (F2), then
(1) Φ, F ∈ C1(X ×X,R) and

〈Φ′(u, v), (ũ, ṽ)〉 = 〈(−Lu, Lv), (ũ, ṽ)〉 − 〈F ′(u, v), (ũ, ṽ)〉. (3.2)

In particular, each critical point of Φ is a weak solution of (1.1).
(2) F ′ : X ×X → X∗ ×X∗ is completely continuous.

Proof . The proof of (1) is routine. The proof of (2) relies on Proposition 2.10 and
we omit it. �

As X is a separable and reflexive Banach space, there exist {ej}∞j=1 ⊂ X and
{fi}∞i=1 ⊂ X∗ such that

X = span{ej|j = 1, 2, · · · }, X∗ = span{fi|i = 1, 2, · · · }
W ∗

, and 〈fi, ej〉 = δij.
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For convenience, we write Xn = span{e1, · · · , en}, X⊥n = span{en+1, · · · }. Now
set E = X ×X, En = Xn ×Xn. Define a group of G = {ι, τ} ∼= Z2 by setting

τ(u, v) = (−u,−v), ι(u, v) = (u, v). (3.3)

Let
Σ = {A ⊂ E : A is closed and (u, v) ∈ A⇒ (−u,−v) ∈ A}. (3.4)

An index γ on Σ is defined by

γ(A) =


0 if A = ∅,
min{m ∈ Z+ : ∃h ∈ C(A,Rm\{0}) such that h(−u,−v) = −h(u, v)} ,

+∞ if such h dose not exist.

(3.5)
Then γ is an index satisfying 1-dimension property by Borsuk-Ulam Theorem (see
[26] Proposition II 5.2.). We can obtain a limit index γ∞ with respect to {En} from
γ.

Lemma 3.3 Assume that F satisfies (F1) and (F2). Then any bounded sequence
{(unk , vnk)} such that

(unk , vnk) ∈ Enk ,Φ(unk , vnk)→ c, ‖(Φnk)
′(unk , vnk)‖ → 0 as nk →∞ (3.6)

possesses a subsequence which converges in E to a critical point of Φ, where Φnk :=
Φ|Enk .

Proof . Since E is reflexive, going if necessary to a subsequence, we can assume that
unk ⇀ u and vnk ⇀ v. Observing that E = ∪∞n=1En, we can choose (ūnk , v̄nk) ∈ Enk
such that ūnk → u and v̄nk → v. Hence

lim
nk→∞

〈Φ′(unk , vnk), (unk − u, 0)〉

= lim
nk→∞

〈Φ′(unk , vnk), (unk − ūnk , 0)〉+ lim
nk→∞

〈Φ′(unk , vnk), (ūnk − u, 0)〉

= lim
nk→∞

〈(Φnk)
′(unk , vnk), (unk − ūnk , 0)〉 = 0. (3.7)

Substituting (3.2) into (3.7) and noticing that F ′ is completely continuous, we obtain

lim
nk→∞

〈Lunk , unk − u〉 = 0. (3.8)

By computing the limit of 〈Φ′(unk , vnk), (0, vnk − v)〉 in the similar way using v̄nk ,
we obtain

lim
nk→∞

〈Lvnk , vnk − v〉 = 0. (3.9)
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From (3.8) and (3.9), we conclude that unk → u and vnk → v since L is of type (S+).
It remains to show that (u, v) is a critical point of Φ. Taking arbitrarily (ūj, v̄j) ∈

Ej, then for nk ≥ j we have

〈Φ′(u, v), (ūj, v̄j)〉 = 〈Φ′(u, v)− Φ′(unk , vnk), (ūj, v̄j)〉+ 〈(Φnk)
′(unk , vnk), (ūj, v̄j)〉.

(3.10)
Taking nk →∞ in the right side of (3.10), we obtain 〈Φ′(u, v), (ūj, v̄j)〉 = 0. Hence
Φ′(u, v) = 0. �

Lemma 3.4 Suppose that F satisfies (F1)-(F4). Then the functional Φ satisfies
(PS)∗c with respect to {En} for each c.

Proof . By Lemma 3.3, we only need to prove that each sequence satisfying (3.6)
is bounded. We can assume that ‖unk‖ ≥ 1 and ‖vnk‖ ≥ 1. From Proposition 2.7
and (F4), we have

‖unk‖ ≥ 〈−(Φnk)
′(unk , vnk), (unk , 0)〉

= 〈Lunk , unk〉+

∫
Ω

Fs(x, unk , vnk)unkdx ≥ ‖unk‖p− . (3.11)

So ‖unk‖ is bounded. On the other hand, from (F3), Proposition 2.7 and Hölder
inequality, we have

c1 ≥ Φ(unk , vnk)

= −
∫

Ω

1

p(x)
|∇unk |p(x)dx+

∫
Ω

1

p(x)
|∇vnk |p(x)dx−F(unk , vnk)

≥ −
∫

Ω

1

p(x)
|∇unk |p(x)dx+

∫
Ω

1

p(x)
|∇vnk |p(x)dx

− 1

µ

∫
Ω

(unkFs(x, unk , vnk) + vnkFt(x, unk , vnk))dx

= −
∫

Ω

1

p(x)
|∇unk |p(x)dx+

∫
Ω

1

p(x)
|∇vnk |p(x)dx− 1

µ
〈F ′(unk , vnk), (unk , vnk)〉

= −
∫

Ω

(
1

p(x)
− 1

µ

)
|∇unk |p(x)dx+

∫
Ω

(
1

p(x)
− 1

µ

)
|∇vnk |p(x)dx

+
1

µ
〈(Φnk)

′(unk , vnk), (unk , vnk)〉

≥ −
(

1

p−
− 1

µ

)
‖unk‖p+ +

(
1

p+

− 1

µ

)
‖vnk‖p−

− 2

µ
‖(Φnk)

′(unk , vnk)‖ (‖unk‖+ ‖vnk‖) . (3.12)

So ‖vnk‖ is bounded. Thus {(unk , vnk)} is a bounded sequence in E. �
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Proposition 3.5 ([8] Lemma 3.3) Assume that X = span{ej|j = 1, 2, · · · }, X⊥m =

span{em+1, · · · }, f : X → R is a weakly-strongly continuous and f(0) = 0. Then

δm := sup
u∈X⊥m, ‖u‖=1

|f(u)| → 0, as m→∞.

Proof of Theorem 1.1. Note that Φ is invariant with respect to the action of G .
We shall verify that Φ satisfies the hypotheses of Theorem 2.20. Set E = U ⊕ V ,
where U = X×{0} and V = {0}×X. Set Y0 = {0}×X⊥m and Y1 = {0}×Xk where
m and k are to be determined. Then Y0 and Y1 are G -invariant and codimV Y0 = m,
dimY1 = k, Fix G = {(0, 0)}. So Fix G ∩ V = {(0, 0)} and (B7)(a) of Theorem 2.20
is satisfied. It remains to verify (b) and (c) of (B7).

First, we verify (b) of (B7). By (F3), we have

Φ(u, 0) = −
∫

Ω

1

p(x)
|∇u|p(x)dx−F(u, 0) ≤ − 1

p+

∫
Ω

|∇u|p(x)dx− c1

∫
Ω

|u|µdx+ c2.

Therefore supu∈X Φ(u, 0) < +∞. Choose α such that α > supu∈X Φ(u, 0).
If (0, v) ∈ Y0 ∩ Sρ (where ρ > 1 is to be determined), we have v ∈ X⊥m and

‖v‖ = ρ. Define f : X → R, f(v) = |v|r(x). Since the embedding X ↪→ Lr(x)(Ω) is
compact by Proposition 2.10, f is weakly-strongly continuous. By Proposition 3.5,
we have δm → 0 as m→∞. By (F2) we obtain

Φ(0, v) =

∫
Ω

1

p(x)
|∇v|p(x)dx−F(0, v)

≥ 1

p+

∫
Ω

|∇v|p(x)dx− c3

∫
Ω

|v|r(x)dx− c4

≥ 1

p+

‖v‖p− − c3|v|r+r(x) − c4

≥ 1

p+

ρp− − c3δ
r+
m ρ

r+ − c4.

Setting ρ = ( c3p+r+δ
r+
m

p−
)

1
p−−r+ , we have

Φ|Y0∩Sρ ≥ (r+ − p−)(p+r+)
r+

p−−r+

(
c3

p−

) p−
p−−r+

δ

p−r+
p−−r+
m − c4 → +∞ as m→∞.

Next, we verify (c) of (B7). For each (u, v) ∈ U ⊕ Y1 and ‖u‖ > 1, ‖v‖ > 1,

Φ(u, v) ≤ − 1

p+

‖u‖p− +
1

p−
‖v‖p+ − c5

∫
Ω

(|u|µ + |v|µ)dx+ c6

≤ 1

p−
‖v‖p+ − c5

∫
Ω

|v|µdx+ c6.
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Since all norms are equivalent in the finite dimension space Y1, we get

Φ(u, v) ≤ 1

p−
‖v‖p+ − c7‖v‖µ + c8.

Then we have sup Φ|U⊕Y1 < +∞ since µ > p+. Thus we can choose k > m and
β > α such that Φ|U⊕Y1 ≤ β.

So
dj = sup

γ∞(A)≥j
inf
z∈A

Φ(z), −k + 1 ≤ j ≤ −m,

are critical values of Φ and α ≤ dj ≤ β. Since α can be chosen arbitrarily large, Φ
has a sequence of critical values dn → +∞. �

4 The RN case

In this section, we always assume that (P2) is satisfied and denote X by W 1,p(x)(RN)

with the norm ‖u‖ defined by (2.2) and denote Xr by W
1,p(x)
r (RN) with the same

norm. The integral functional of (1.2) is

Ψ(u, v) = −
∫
RN

1

p(x)
(|∇u|p(x) + |u|p(x))dx+

∫
RN

1

p(x)
(|∇v|p(x) + |v|p(x))dx−G(u, v),

where

G(u, v) :=

∫
RN
G(|x|, u, v)dx, u, v ∈ X.

Definition 4.1 (u, v) ∈ X ×X is called a weak solution of (1.2) if

−
∫
RN

(|∇u|p(x)−2∇u∇ũ+ |u|p(x)−2uũ)dx

+

∫
RN

(|∇v|p(x)−2∇v∇ṽ + |v|p(x)−2vṽ)dx

=

∫
RN
Gs(|x|, u, v)ũdx+

∫
RN
Gt(|x|, u, v)ṽdx, (4.1)

for all (ũ, ṽ) ∈ X ×X.

Denote
〈(Tu, Tv), (ũ, ṽ)〉 := 〈Tu, ũ〉+ 〈Tv, ṽ〉,

where T is defined as (2.4) and denote

〈G ′(u, v), (ũ, ṽ)〉 :=

∫
RN
Gs(|x|, u, v)ũdx+

∫
RN
Gt(|x|, u, v)ṽdx.

Then (4.1) can be rewritten as

〈(−Tu, Tv), (ũ, ṽ)〉 = 〈G ′(u, v), (ũ, ṽ)〉, for all (ũ, ṽ) ∈ X ×X.
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Proposition 4.2 ([22] Principle of symmetric criticality) If u is a critical point
of Ψ|Xr×Xr , then u is also a critical point of Ψ|X×X and thus a radially symmetric
solution of problem (1.2).

By the principle of symmetric criticality, to solve problem (1.2), we shall to find
the critical points of Ψ restricted on Xr ×Xr using the limit index theory.

Lemma 4.3 Suppose G satisfies (G1)-(G4). Then
(1) Ψ,G ∈ C1(Xr ×Xr,R) and

〈Ψ′(u, v), (ũ, ṽ)〉 = 〈(−Tu, Tv), (ũ, ṽ)〉−〈G ′(u, v), (ũ, ṽ)〉, for all (ũ, ṽ) ∈ Xr×Xr.
(4.2)

In particular, each critical point of Ψ is a weak solution of the problem (1.2).
(2) G ′ : Xr ×Xr → X∗r ×X∗r is completely continuous.

Proof . (1) is obvious. Now we shall prove G ′ is continuous. Suppose (un, vn) →
(u, v) ∈ Xr × Xr. By Proposition 2.9, we have (un, vn) → (u, v) ∈ (Lp(x)(RN))2 ∩
(Lq(x)(RN))2. It follows from (G2) and Proposition 2.13(2) that

Gs(|x|, un, vn)→ Gs(|x|, u, v) in Lp
o(x)(RN) + Lq

o(x)(RN),

Gt(|x|, un, vn)→ Gt(|x|, u, v) in Lp
o(x)(RN) + Lq

o(x)(RN).

For all (ũ, ṽ) ∈ Xr ×Xr, we obtain, by Hölder inequality (2.1),

|〈G ′(un, vn), (ũ, ṽ)〉 − 〈G ′(u, v), (ũ, ṽ)〉|

≤
∫
RN
|Gs(|x|, un, vn)−Gs(|x|, u, v)||ũ|dx

+

∫
RN
|Gt(|x|, un, vn)−Gt(|x|, u, v)||ṽ|dx

≤ 2|Gs(|x|, un, vn)−Gs(|x|, u, v)|po(x)∨qo(x)|ũ|p(x)∧q(x)

+2|Gt(|x|, un, vn)−Gt(|x|, u, v)|po(x)∨qo(x)|ṽ|p(x)∧q(x),

where 1/p(x) + 1/po(x) = 1, 1/q(x) + 1/qo(x) = 1. Thus

‖G ′(un, vn)− G ′(u, v)‖X∗r×X∗r → 0

as n→∞.
Now let us prove that G ′ is completely continuous. For any ε > 0, using (G2)

and (G4), we obtain Cε > 0 such that

|Gs(|x|, s, t)|+ |Gt(|x|, s, t)| ≤ ε(|s|p(x)−1 + |t|p(x)−1) + Cε(|s|q(x)−1 + |t|q(x)−1).
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Assume that (un, vn) ⇀ (u, v) in Xr × Xr. Since Xr ↪→ Lq(x)(RN) is compact by
Proposition 2.11, we have (un, vn)→ (u, v) in (Lq(x)(RN))2. By Proposition 2.13(1)
we have

Gs(|x|, un, vn)− ε(|un|p(x)−1 + |vn|p(x)−1)→ Gs(|x|, u, v)− ε(|u|p(x)−1 + |v|p(x)−1)

in (Lq
o(x)(RN))2, and

Gt(|x|, un, vn)− ε(|un|p(x)−1 + |vn|p(x)−1)→ Gt(|x|, u, v)− ε(|u|p(x)−1 + |v|p(x)−1)

in (Lq
o(x)(RN))2.

So we obtain

‖Gs(|x|, un, vn)−Gs(|x|, u, v)‖+ ‖Gt(|x|, un, vn)−Gt(|x|, u, v)‖

= sup
‖ũ‖≤1

∫
RN
|Gs(|x|, un, vn)−Gs(|x|, u, v)||ũ|dx

+ sup
‖ṽ‖≤1

∫
RN
|Gt(|x|, un, vn)−Gt(|x|, u, v)||ṽ|dx < cε.

Therefore G ′ is completely continuous. �
Since Xr is a separable and reflexive Banach space, there exist {ej}∞j=1 ⊂ Xr such

that (Xr)n := span{e1, · · · , en} and (Xr)
⊥
n = span{en+1, · · · }. Now set E = Xr×Xr

and En = (Xr)n × (Xr)n. As we have done in (3.3), (3.4) and (3.5), we can obtain
a limit index γ∞ with respect to {En}.

Lemma 4.4 Suppose that G satisfied (G1)-(G5). Then Ψ satisfies (PS)∗c condition
with respect to {En} for each c.

Proof . Lemma 3.3 is also suitable here if we replace Φ and L by Ψ and T respec-
tively. Thus we only need to prove each sequence satisfying

{(unk , vnk)} ∈ Enk ,Ψ(unk , vnk)→ c, ‖(Ψnk)
′(unk , vnk)‖ → 0 as nk →∞,

is bounded where Ψnk := Ψ|Enk . By (G5) and Proposition 2.7 similar to (3.11), we
have

‖unk‖ ≥ 〈−(Ψnk)
′(unk , vnk), (unk , 0)〉 ≥ ‖unk‖p− .

So ‖unk‖ is bounded in Xr. On the other hand, by (G3), similar to (3.12), we have

c1 ≥ −
(

1

p−
− 1

µ

)
‖unk‖p+ +

(
1

p+

− 1

µ

)
‖vnk‖p−

− 2

µ
‖(Ψnk)

′(unk , vnk)‖ (‖unk‖+ ‖vnk‖) .
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So ‖vnk‖ is bounded in Xr. Thus {(unk , vnk)} is a bounded sequence in E. �

Proof of Theorem 1.2. We shall find the critical points of Ψ in E by using
Theorem 2.20. By the assumption (G6), Ψ is invariant with respect to G . Set
E = U ⊕ V , where U = Xr × {0} and V = {0} × Xr. Set Y0 = {0} × (Xr)

⊥
m and

Y1 = {0} × (Xr)k where m and k are to be determined. Then Y0 and Y1 are G -
invariant and codimV Y0 = m, dimY1 = k, Fix G = {(0, 0)}. So Fix G ∩V = {(0, 0)}
and (B7)(a) of Theorem 2.20 is satisfied. It remains to verify (b) and (c) of (B7).

First, we verify (b) of (B7). After integrating, we obtain from (G2)-(G4) the
existence of two positive constants c1 and c2 < 1/p+ such that

G(|x|, s, 0) ≥ c1|s|µ − c2|s|p(x), for all x ∈ RN , s ∈ R.

Hence, for all u ∈ Xr, we have

Ψ(u, 0) = −
∫
RN

1

p(x)
(|∇u|p(x) + |u|p(x))dx− G(u, 0)

≤ −
∫
RN

1

p(x)
(|∇u|p(x) + |u|p(x))dx− c1

∫
RN
|u|µdx+ c2

∫
RN
|u|p(x)dx

< ∞.

Then we can choose α such that α > supu∈Xr Ψ(u, 0).
If (0, v) ∈ Y0 ∩ Sρ (where ρ > 1 is to be determined), we have v ∈ (Xr)

⊥
m

and ‖v‖ = ρ. Define f : Xr → R, f(v) = |v|q(x). Since the compact embedding
Xr ↪→ Lq(x)(Ω), f is weakly-strongly continuous. By Proposition 3.5, δm → 0 as
m→∞. Then by (G2), (G3),

Ψ(0, v) =

∫
RN

1

p(x)
(|∇v|p(x) + |v|p(x))dx− G(0, v)

≥ 1

p+

∫
RN

(|∇v|p(x) + |v|p(x))dx− c3

∫
RN
|v|q(x)dx− c4

≥ 1

p+

‖v‖p− − c3|v|q+q(x) − c4

≥ 1

p+

ρp− − c3δ
q+
m ρ

q+ − c4.

Setting ρ = ( c3p+q+δ
q+
m

p−
)

1
p−−q+ , we have

Ψ|Y0∩Sρ ≥ (q+ − p−)(p+q+)
q+

p−−q+

(
c3

p−

) p−
p−−q+

δ

p−q+
p−−q+
m − c4 → +∞ as m→∞.
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Next, we verify (c) of (B7). For each (u, v) ∈ U ⊕ Y1, and ‖u‖ > 1, ‖v‖ > 1,

Ψ(u, v) ≤ − 1

p+

‖u‖p− +
1

p−
‖v‖p+ − c5

∫
Ω

(|u|µ + |v|µ)dx+ c6

≤ 1

p−
‖v‖p+ − c5

∫
Ω

|v|µdx+ c6.

Since all norms are equivalent in the finite dimension space Y1, we get

Ψ(u, v) ≤ 1

p−
‖v‖p+ − c7‖v‖µ + c8.

Then we have sup Ψ|U⊕Y1 < +∞ since µ > p+. Thus we can choose k > m and
β > α such that Ψ|U⊕Y1 ≤ β.

So
dj = sup

γ∞(A)≥j
inf
z∈A

Ψ(z), −k + 1 ≤ j ≤ −m,

are critical values of Ψ and α ≤ dj ≤ β. Since α can be chosen arbitrarily large, Ψ
has a sequence of critical values dn → +∞.

If N = 4 or N ≥ 6, using the Bartsch-Willem’s famous nonradial solutions result
in [2] (see also [27] Theorem 1.31), the problem (1.2) possesses infinitely many
nonradial solutions. �
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[23] M. Růžička: Electrorheological Fluids: Modeling and Mathematical Theory,
Lecture Notes in Math., Vol. 1748, Springer-Verlag, Berlin, 2000.

[24] S. Samko: Convolution type operators in Lp(x), Integr. Transform. and Special
Funct., 7(1-2)(1998), 123-144.

[25] S. Samko: On a progress in the theory of Lebesgue spaces with variable ex-
ponent: maximal and singular operators, Integral Transforms and Special Func-
tions, 16(2005), 461-482.

[26] M. Sturwe: Variational methods, 2nd edition, Springer-Verlag, 1996.

[27] M. Willem: Minimax theorems, Progress in Nonlinear Differential Equations
and Their Applications, Vol. 24, Birkhäuser, 1996.
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